import datetime
starting_date=datetime.datetime(2019, 1, 1)
ending_date=datetime.datetime.today()
The starting_date and ending_date variables are now initiated with two datetime datatypes.
Now, lets fetch the data –
zap=kite.historical_data(token,starting_date,ending_date,"day")
zap= pd.DataFrame(zap)
print(zap.head(10))
It will output –
The initial display exhibits the first 10 rows, utilizing the ‘head’ function to offer a more concise data view of the Pandas Dataframe. It effectively presents OHLC data and volume for each day.
date open high low close volume
0 2019-01-01 00:00:00+05:30 1072.60 1074.55 1058.15 1068.55 4674622
1 2019-01-02 00:00:00+05:30 1062.35 1074.25 1049.45 1054.60 7495772
2 2019-01-03 00:00:00+05:30 1055.65 1062.45 1039.05 1041.60 7812061
3 2019-01-04 00:00:00+05:30 1046.05 1052.75 1030.50 1047.25 8880761
4 2019-01-07 00:00:00+05:30 1055.20 1066.10 1049.45 1053.05 5784262
5 2019-01-08 00:00:00+05:30 1053.35 1058.00 1044.70 1052.95 5901336
6 2019-01-09 00:00:00+05:30 1059.95 1064.70 1047.30 1058.75 6049942
7 2019-01-10 00:00:00+05:30 1055.90 1059.00 1051.40 1055.65 4280616
8 2019-01-11 00:00:00+05:30 1055.75 1061.65 1037.65 1046.65 6781266
9 2019-01-14 00:00:00+05:30 1043.75 1049.00 1035.55 1045.45 4313661